Praktek Smart Farming Pada Kota-Kota Di Dunia

Authors

  • Gunawan Adi Pratio Badan Riset dan Inovasi Daerah Kota Surakarta
  • Siti Nur Rohmah Sekolah Pascasarjana, Universitas Muhammadiyah Surakarta
  • Muhammad Ali Akbarsyah Sekolah Pascasarjana, Universitas Muhammadiyah Surakarta
  • Arseto Endro Supriyanto Program Studi Hukum Bisnis, Universitas Muhammadiyah Karanganyar

DOI:

https://doi.org/10.58684/jbs.v3i2.79

Keywords:

Smart farming, pertanian cerdas, teknologi pertanian, keberlanjutan, ketahanan pangan

Abstract

Smart farming, sebagai inovasi teknologi dalam pertanian, telah berkembang pesat dalam beberapa tahun terakhir, memberikan solusi yang efektif untuk berbagai tantangan yang dihadapi oleh sektor pertanian di kota-kota di seluruh dunia. Dalam konteks urbanisasi yang cepat dan pertumbuhan populasi yang meningkat, praktik smart farming menawarkan pendekatan yang berkelanjutan untuk meningkatkan produksi pangan serta efisiensi penggunaan sumber daya. Penelitian ini bertujuan untuk mengeksplorasi penerapan praktik smart farming di berbagai kota di dunia, dengan fokus pada manfaat, tantangan, dan dampak dari teknologi pertanian cerdas.

Metode yang digunakan dalam penelitian ini adalah studi pustaka, yang mencakup analisis berbagai literatur dan studi kasus dari kota-kota yang telah menerapkan teknologi smart farming. Berbagai teknologi yang menjadi fokus dalam penelitian ini mencakup Internet of Things (IoT), drone, sensor tanah, dan sistem manajemen pertanian berbasis data. Penerapan teknologi ini tidak hanya meningkatkan hasil panen tetapi juga mengurangi dampak lingkungan dari kegiatan pertanian, mengingat pentingnya keberlanjutan dalam konteks perubahan iklim.

Hasil penelitian menunjukkan bahwa smart farming memberikan banyak manfaat bagi kota-kota, seperti peningkatan efisiensi dalam penggunaan air dan pupuk, pengurangan biaya operasional, dan peningkatan ketahanan pangan. Misalnya, dengan menggunakan sensor tanah, petani dapat memantau kelembapan tanah secara real-time, sehingga dapat melakukan irigasi yang lebih efisien dan mengurangi pemborosan air. Selain itu, penggunaan drone dalam pemantauan tanaman memungkinkan petani untuk mendeteksi masalah seperti serangan hama atau penyakit dengan lebih cepat, sehingga tindakan pencegahan dapat diambil sebelum kerusakan meluas.

Namun, meskipun banyak manfaat yang ditawarkan, penerapan smart farming juga menghadapi beberapa tantangan. Keterbatasan dalam akses terhadap teknologi, kurangnya pelatihan bagi petani, dan masalah regulasi menjadi hambatan signifikan dalam adopsi teknologi ini di beberapa daerah. Selain itu, ketidakpastian biaya awal yang tinggi untuk investasi teknologi dapat menjadi penghalang bagi petani kecil untuk beralih ke praktik pertanian cerdas. Oleh karena itu, perlu ada dukungan dari pemerintah dan lembaga swasta untuk memberikan pelatihan, sumber daya, dan insentif bagi petani yang ingin mengadopsi teknologi ini.

Penelitian ini menyimpulkan bahwa smart farming memiliki potensi besar untuk merevolusi cara pertanian di kota-kota di seluruh dunia. Dengan pendekatan yang tepat dan dukungan yang memadai, praktik ini dapat meningkatkan ketahanan pangan, efisiensi penggunaan sumber daya, dan keberlanjutan lingkungan. Ke depannya, diharapkan lebih banyak kota yang dapat mengadopsi dan menerapkan teknologi smart farming untuk menghadapi tantangan pertanian di era modern ini.

References

Acosta, J., et al. (2020). Innovative approaches to urban agriculture: A review of smart farming initiatives. Sustainability, 12(4), 1357.

Adger, W. N., et al. (2021). Community engagement in climate change adaptation: The role of smart farming. Environmental Science & Policy, 119, 123-131.

Al-Khatib, I. A., Al-Jamal, M. N., & Al-Qudah, H. M. (2020). Vertical farming: A new approach in urban agriculture. Sustainability, 12(4), 1405.

Al-Sharif, A., et al. (2021). Innovations in vertical farming: The case of AeroFarms in Dubai. Journal of Agricultural Engineering, 10(4), 231-240.

Alvaro-Fuentes, J., et al. (2020). Smart farming and sustainable agriculture: The role of precision agriculture technologies. Agricultural Systems, 184, 102925.

Banerjee, C., & Adenaeuer, L. (2021). Urban agriculture and smart farming: A new paradigm for city resilience. Landscape and Urban Planning, 203, 103901.

Benke, K., & Tomkins, B. (2017). Future food-production systems: vertical farming and controlled-environment agriculture. Sustainability: Science, Practice and Policy, 13(1), 13-26.

Berckmans, D. (2014). Precision livestock farming technologies for welfare management in intensive livestock systems. Rev Sci Tech, 33(1), 189-196.

Bhatti, M. H., Kiran, U., & Javed, M. (2021). Smart farming: The future of sustainable agriculture. Journal of Cleaner Production, 290, 125790.

Brown, L., et al. (2021). Urban agriculture in Wellington: A pathway to sustainability. Sustainable Cities and Society, 65, 102690.

Chen, X., et al. (2021). The future of smart farming: Trends and challenges in urban agriculture. Computers and Electronics in Agriculture, 182, 105959.

Daccache, A., Ciurana, J. S., Rodriguez Diaz, J. A., & Knox, J. W. (2014). Water and energy footprint of irrigated agriculture in the Mediterranean region. Environmental Research Letters, 9(12), 124014.

de Moraes, J. F. L., Duarte, T. M., & Valle, T. L. (2020). Smart Agroforestry Systems for the Tropics. Springer.

DeMarco, L., & Kelsey, S. (2020). Urban agriculture in New York City: A case study of Brooklyn Grange. Journal of Urban Agriculture, 9(2), 45-57.

Duflo, E., et al. (2020). The role of regulations in promoting agricultural innovation. Journal of Development Economics, 143, 102-115.

FAO. (2021). The State of Food Security and Nutrition in the World 2021. Food and Agriculture Organization.

Fernández, M., et al. (2021). Connecting local producers and consumers: The role of digital technology in urban farming. Sustainable Cities and Society, 64, 102569.

Garibaldi, L. A., et al. (2020). Pollination services in urban landscapes: Smart farming as a tool for enhancing biodiversity. Nature Sustainability, 3(2), 134-144.

Gebbers, R., & Adamchuk, V. I. (2010). Precision agriculture and food security. Science, 327(5967), 828-831.

Ghasemi, M., et al. (2021). Cybersecurity challenges in smart farming: Risks and mitigation strategies. Computers and Electronics in Agriculture, 183, 105917.

Jansen, M., et al. (2021). Urban farming initiatives in Amsterdam: A case study of The Urban Farm. Agricultural Systems, 185, 102956.

Jones, T., et al. (2021). Community agriculture in Melbourne: Enhancing urban sustainability through public space. Urban Forestry & Urban Greening, 58, 126928.

Kahn, M. E., et al. (2020). Urbanization and sustainable food systems: The role of smart farming. Urban Studies, 57(10), 2009-2027.

Kamilaris, A., et al. (2021). The impact of IoT technologies in agriculture: A review of smart farming applications. Agricultural Systems, 189, 103025.

Keren, M., et al. (2021). Integrating technology into urban farming: Smart solutions for sustainable cities. Agricultural Economics, 52(3), 521-535.

Khan, A., et al. (2020). Barriers to the adoption of smart farming technologies: A review. Journal of Cleaner Production, 257, 120380.

Kim, H., et al. (2021). Rooftop farming: A sustainable solution for urban agriculture in Seoul. Journal of Urban Planning and Development, 147(3), 04021030.

Kozai, T. (2018). Smart Plant Factory: The Next Generation Indoor Vertical Farms. Springer.

Kshetri, N. (2020). Blockchain and AI-based solutions to social problems: Technological, economic, and legal perspectives. Emerald Group Publishing.

Kumar, M., & Cho, Y. (2014). Smart Farming–Technologies to Build Environment Friendly, Food Secure and Economically Sound Agricultural System. Asian Journal of Agriculture and Food Science, 2(6), 1-8.

Lee, A., et al. (2020). Urban farming in Hong Kong: Innovations in rooftop agriculture. Journal of Urban Agriculture, 9(1), 23-34.

Levy, A., et al. (2020). Integrating technology in urban agriculture: The case of Tel Aviv. Food Security, 12(4), 919-934.

Li, S., Wang, T., & Shen, J. (2020). Design and Implementation of Intelligent Greenhouse System Based on the IoT and AI Technologies. IEEE Access, 8, 36458-36467.

Mitchell, R., et al. (2021). Data-driven agriculture: Enhancing urban farming in Boston. Journal of Agricultural Informatics, 12(3), 45-58.

Møller, K., et al. (2020). The role of smart technologies in urban agriculture: The case of Copenhagen. Agricultural Systems, 183, 102905.

Müller, A., et al. (2020). Innovations in urban agriculture: The case of Berlin. Urban Agriculture & Regional Food Systems, 5, 1-10.

Mwangi, J., et al. (2020). Urban farming initiatives in Nairobi: Empowering communities through sustainable agriculture. Food Security, 12(4), 919-934.

Pedersen, S. M., Lind, K. M., & Fountas, S. (2017). Precision Agriculture: Technology and Economic Perspectives. Springer.

Ponce, C., & Paredes, R. (2021). The impact of smart farming on urban resilience: A global perspective. Journal of Environmental Management, 295, 113141.

Poulsen, M. N., Spiker, M. L., & Winch, P. J. (2015). Growing an Urban Oasis: Urban Farming and Food Security in Baltimore, Maryland. Food Security, 7(2), 357-368.

Robert, P., et al. (2021). Vertical gardens in Paris: A sustainable approach to urban agriculture. Sustainable Cities and Society, 65, 102629.

Rossi, C., et al. (2021). Urban gardening in Rome: Enhancing food security and community engagement. Journal of Urban Planning and Development, 147(2), 04021012.

Schneider, J., et al. (2020). Community participation in urban agriculture: A case study from Zurich. Urban Agriculture & Regional Food Systems, 5, 1-10.

Simonne, E. H., et al. (2020). Educational initiatives for promoting smart farming technologies in urban agriculture. Journal of Extension, 58(6), 6-10.

Tan, J., et al. (2020). Urban farming in Singapore: Innovations and sustainability. Sustainable Cities and Society, 63, 102457.

Taylor, C., et al. (2021). Community gardens in Los Angeles: Enhancing food security through smart farming. Journal of Urban Agriculture, 9(1), 12-25.

Tzeng, Y., et al. (2021). The role of data analytics in smart farming: A case study in urban environments. Computers and Electronics in Agriculture, 182, 105968.

Tzounis, A., Katsoulas, N., Bartzanas, T., & Kittas, C. (2017). Internet of Things in Agriculture, Recent Advances and Future Challenges. Biosystems Engineering, 164, 31-48.

Wiskerke, J. S. C. (2020). Urban agriculture and the role of technology in food systems: The case of Amsterdam. Agriculture and Human Values, 37(1), 45-57.

Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big Data in Smart Farming – A review. Agricultural Systems, 153, 69-80.

Wolfert, S., et al. (2021). Smart farming: A review of the impact of ICT on the sustainability of agriculture. Computers and Electronics in Agriculture, 176, 105621.

Wong, J., et al. (2020). Vertical farming: A solution to food insecurity in Toronto. Canadian Journal of Agricultural Economics, 68(1), 19-35.

Yamaguchi, T., et al. (2020). Robotics in agriculture: The impact of automation on urban farming in Tokyo. Asian Journal of Agricultural and Horticultural Research, 10(2), 12-21.

Zhang, A., et al. (2020). The role of smart farming in sustainable agriculture: A review. Agricultural Systems, 178, 102733.

Zhang, A., Wang, H., & Zhang, Z. (2020). The role of smart farming in sustainable agriculture: A review. Agricultural Systems, 178, 102733.

Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: A review. Precision Agriculture, 13(6), 693-712.

Zhang, L., et al. (2021). Smart agriculture in Shanghai: Leveraging AI and big data for urban food production. Journal of Agricultural and Environmental Ethics, 34(4), 1121-1138.

Zhou, J., et al. (2020). Applications of drone technology in precision agriculture: A review. Remote Sensing, 12(2), 250.

Published

2024-11-28

How to Cite

Praktek Smart Farming Pada Kota-Kota Di Dunia. (2024). Jurnal Bengawan Solo Pusat Kajian Penelitian Dan Pengembangan Daerah Kota Surakarta, 3(2), 88-106. https://doi.org/10.58684/jbs.v3i2.79